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Macrotransport processes (generalized Taylor dispersion phenomena) constitute 
coarse-grained descriptions of comparable convective-diffusive-reactive micro- 
transport processes, the latter supposed governed by microscale linear con- 
stitutive equations and boundary conditions, but characterized by spatially 
nonuniform phenomenological coefficients. Following a brief review of existing 
applications of the theory, we focus--by way of background information---upon 
the original (and now classical) Taylor-Aris dispersion problem, involving the 
combined convective and molecular diffusive transport of a point-size Brownian 
solute "molecule" (tracer) suspended in a Poiseuille solvent flow within a 
circular tube. A series of elementary generalizations of this prototype problem 
to chromatographic-like solute transport processes in tubes is used to illustrate 
some novel statistical-physical features. These examples emphasize the fact that 
a solute molecule may, on average, move axially down the tube at a different 
mean velocity (either larger or smaller) than that of a solvent molecule. 
Moreover, this solute molecule may suffer axial dispersion about its mean 
velocity at a rate greatly exceeding that attributable to its axial molecular diffu- 
sion alone. Such "chromatographic anomalies" represent novel macroscale non- 
linearities originating from physicochemical interactions between spatially 
inhomogeneous convective-diffusive-reactive microtransport processes. 

KEY WORDS: Brownian motion in flowing/reacting systems; chromato- 
graphy; porous media, transport processes in; Taylor dispersion theory, 
generalized; transport processes, micro- to macroscale transition. 
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originally relating to the convective flow and dispersion of a soluble solute 
dissolved in a solvent undergoing Poiseuille flow in a circular tube. It is 
well known ~4~ that such a transport process is governed at the microscale 
by a convective-diffusion equation, involving radial, azimuthal, and axial 
transport of the solute within the tube. Taylor set himself the problem of 
coarse graining this equation, so as to describe only the mean, axial trans- 
port of solute down the tube, which is normally the only process of physi- 
cal interest in applications. In bringing this quest to fruition he paved the 
way for an entirely new field--namely generalized Taylor dispersion theory 
or, as it has more recently come to be called (in a somewhat broader 
context), maerotransport processes. 

Macrotransport processes provide a robust scheme for the study 
of dispersion phenomena arising from solute-velocity (and other 
phenomenological-coefficient) inhomogeneities in convective-diffusive 
transport processes. Since its original paradigmatic presentation, ~'*" addi- 
tional physical elements have been incorporated into the theory, followed 
by successful application to a wide variety of transport problems. These 
include: (i) sedimentation of nonspherical particles~7'~; (ii) dispersion 
accompanying solute flow through porous media (unconsolidated, "~ con- 
solidatedI"~); (iii) surface transport"~'12~; (iv) direct "coupling" effects, ~3~ 
which later enabled the study of the transport of flexible bodies and chains 
of interacting Brownian particles without having recourse to adhoc 
preaveraging schemes~t4't~); (v) time-periodic nonunidirectional flows ~ '  ~ ;  
(vi) cellular flows characterized by a vortical microscale flow with no net 
macroscale flowt~9'2~ (vii) chemically reactive ~2t 23~ and aerosol filtra- 
tion ~24~ systems, involving nonconserved Brownian tracers; (viii) effects of 
finite-size particles applied to chromatographic separation processes ~z5 27~; 
(ix) turbulent flow fieldst28); and (x) dispersion of "momentum tracers" in 
relation to the rheology of suspensions. ~29~ 

An attractive feature of the general scheme is that it confers a unified, 
indeed paradigmatic, structure upon the analysis of an apparently widely- 
disparate class of physical problems, albeit those governed by linear con- 
stitutive equations and boundary conditions, The heterogeneous nature of 
the audience for whom this presentation is intended excludes entering into 
the details 2 of the paradigm, ~5'6~ and its extension to chemically reactive 
systemsJ2~ 23) Moreover, in the limited time (and space) available we can 
do little more than enter into a few elementary examples illuminating 
several of the useful (and interesting) results obtained to date. In this con- 
text we have chosen to focus exclusively upon the role of maerotransport 

2 In the nonreactive case, the most probing examination of the fundamenta~ paradigms of 
macrotransport processes will be found in the analysis of Frankel and Brenner. ~176 
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processes in rationalizing a variety of chromatographic-type concepts. 
These involve calculations of the mean velocity 0*  and dispersivity/)* of 
a convected Brownian solute through capillary tubes (and, concomitantly, 
capillary-tube models of packed beds), including the case of chemically 
reactive solutes undergoing first-order irreversible reactions--for which a 
third macrotransport coefficient, the solute's volumetric reactivity K*, is 
required.(2~ 23~ 

2. THE T A Y L O R - A R I S  (1 3) PROBLEM 

2.1. Convect ion and Dif fusion of  a Solute in a Poiseuille Flow. 
Microt ranspor t  Equations 

Referring to Fig. l, consider the Poiseuille flow 

v(r) = 2ff[1 - (r/ro) 2] (2.1) 

of an incompressible viscous fluid (the "solvent") at mean velocity 

i f -  I I2~Icr" -_-SS_.z v(r)r dr d~b (2.2) 
~ r  o ) ) 

through an infinitely long circular capillary tube of radius r,,. Imagine that 
at time t = 0 a single point-size Brownian solute ~'molecule," "particle," or 
"corpuscle" (hereafter collectively referred to as the "tracer") is introduced 
into the flowing solvent at the point (r', ~b', z'), where (r, ~b, z) constitute a 

I 

b Poiseuille f low 

t /g~ ,'P / 
/ ,,b" 

h 
V "JF 

Fig. 1. Poiseuille flow of a viscous solvent at mean velocity P through an infinitely long 
circular capillary tube of radius r,,. At time t = 0 a point-size solute "molecule" (tracer) is 
introduced into the flowing fluid at the point (r', ~', z') without disturbing the flow. 
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system of circular cylindrical coordinates spanning the range (0 ~< r < r,,, 
0 <~ ~b < 27t, - oo < z < oo). At the continuum-mechanical level of descrip- 
tion, subsequent transport of this tracer for times t > 0 occurs partly by 
convection wherein it is passively carried along piggy-back style at velocity 
v(r) by the flowing solvent, and partly by diffusion (with molecular or 
Brownian diffusivity D) owing to the tracer's Brownian motion through the 
solvent. 

The ensuing stochastic microscale tracer transport process can be 
described by the (conditional) probability density ~5'6~ P-P(r,~,z ,  t l 
r', ~b', z') that the tracer is present at time t at the point (r, .~, z) given its 
initial introduction into the system at time t=O  at the point (r', ~b',z'). 
Since the tracer is necessarily a conserved entity (at least in the nonreactive 
case under discussion here), it is necessarily present somewhere within the 
tube with probability one for all t 1> O, whence P satisfies the normalization 
condition 

f~' ji2~',,Prdrd~dz={lo (t>~()) .... ~ ~ (t < O) { 2 . 3 )  

The conditional probability density P governing the tracer's micro- 
transport process satisfies the following microscale convective-diffusive, 
initial- and boundary-value problem~5~: 

(?P 
v(r) ~ = D VzP (2.41 

-2; + 

P = ,-{tO-'6(r-r')f(r (t=0)(t < 0) (2.5b){2"5a) 

(?P/Or=O at r=r o {2,6) 

P - , 0  as Iz-z't ~ oe (2.7) 

with 6 the Dirac delta function. The implicit unit coefficient multiplying the 
right-hand side of (2.5a) derives from the unit normalization condition 
(2.3). Equation (2.6) arises from the impenetrability of the tube wall to 
both the solute and solvent, and represents a zero-valued normal flux 
condition imposed upon the solute. The spatial attenuation (2.7) of the 
far-field probability density toward zero is assumed to be faster than 
algebraic so as to assure that the integrals defining the axial moments 

Mm a~J f ~_~ f]~ f~~ (z-  z')" Pr dr dO dz (2.8) 

(re=O, 1, 2,...) are convergent for all m. 
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The initial- and boundary-value problem (2.4)-(2.7) posed for the 
solute's microprobability field P possesses a unique solution. Because of the 
nonconstancy of the phenomenological function v(r) appearing in the 
convective term of the solute conservation continuity equation (2.4), this 
solution must be obtained numerically rather than analytically. Given the 
computational capacities and speed of modern computers, this would not 
be a difficult task though the numerical solution would be specific to 
the specified initial tracer position (r', ~', z'); that is, a different numerical 
solution would be required for each different initial position. 

2.1.1. Total (Condit ional)  Areal Probability Density Field 3 
P(z, t). In any event, such exhaustively detailed information as would be 
embodied in the microsolution P(r, (J, z, t)--numerically or otherwise--is 
rarely, if ever, required in practice. Rather, the quantity of usual interest in 
applications is the quantity 

ff der f ]~ U" p 
= Jo rdrdO (2.9) 

Modulo a factor of l/nr~, P represents the area-average probability density 
over the cross section z = const. Obviously, P can be computed numerically 
from comparable numerical knowledge of P, although again the result 
would be specific to the initial tracer position (r', (J', z'). 

To the extent that knowledge of P is all that is required in practice, 
one is completely done with the physical problem at this stage. Unfor- 
tunately, such strictly numerical knowledge while perhaps useful in 
parametric engineering design studies--rarely furnishes useful conceptual 
insights into the overall, macroscale physical phenomena arising from inter- 
actions existing between microscale convective and diffusive solute trans- 
port mechanisms. Moreover, the computation of P via this "first-principles" 
scheme is very wasteful of computer resources in the sense that having 
expended considerable effort to first compute the microfield P(r, (~, z, t), 
much of this detailed information is effectively discarded when the latter is 
coarse grained during the integration step (2.9) leading to iV(z, t). 

2.2. Macrotransport  Processes 

Given the preceding remarks, it is natural to inquire as to whether a 
more insightful and computer-resource-effective scheme or paradigm exists 
for (rigorously) proceeding from the specified microscale parameters and 

Here and throughout, we shall suppress the terms (r', g~', z') that would otherwise appear in 
the arguments of P and P. 
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input data depicted in Fig. 2 to the desired coarse-grained field P(z, l). This 
important question was answered in the affirmative by Taylor IL21 more 
than 30 years ago, with a major conceptual assist from Aris, 13~ leading to 
what is today called Taylor dispersion theory. In particular, Taylor was 
able to show that if one is interested only in the asymptotic, long-time 
macroscale distribution P=-P(z,  t) for times t satisfying the dimensionless 
inequality 

Dt/r~ >> I (2.10) 

then P itself obeys a (one-dimensional, macroscale) convective-"dispersion" 
macrotransport equation, 

OP - ,  O2P 3P O ,  ~z ~__ D _ _  
-~-f + ,~z ~ 

(2.11) 

possessing constant macroscale phenomenological coefficients 0* and L3*. 
The latter are respectively given by 

U*= ff (2.12) 

and 

D* = D + r2~ ff2 (2.~3) 
48D 

and are thus expressed in terms of the prescribed input parameters r,,~ 
ff and D (cf. Fig. 2) governing the comparable microtransport problem 
defining P. Not only are these two coeff• independent of spatial 
position z and time t, but, equally important, they are independent of the 
initial (microscale) position (r', ~b', z'). 

INPUT DATA OUTPUT 

r o 

V 
D 

z') 

FIRST [ 

TAYLOR-ARIS 
PARADIGM 

m 

P (z, t) 

Fig. 2. Two (equally rigorous) alternative schemes for proceeding from the specified 
microscale parameters and initial data to the area-average solute concentration P~ 



Macrotransport Processes 1101 

To obtain the mean field P, one has thus only to solve the constant- 
coefficient macrotransport equation (2.11 ) subject to the far-field boundary 
condition 

P ~ 0  as ] z - z ' l ~  (2.14) 

and macroscale initial condition 

p={60(z-z' ) ( t=0 )  
( t<0 )  (2.15) 

The solution, 

P"~P(z-z', t)=-P(z, t), say (2.16) 

of these equations satisfies the conservation law 

f~"_~ pdz={10 (t~>0)(t<0) (2.17) 

Insofar as the effective use of computer resources is concerned, the 
one-dimensional Taylor Aris macroscale equation (2.11) for computing 
P(z, t) albeit valid only for the long times t indicated in (2.10) is 
obviously far superior to the ah initio scheme embodied in the numerical 
solution of the three-dimensional microscale convective-diffusive equation 
(2.11) [leading to P(z, t) via (2.9)]. Moreover, the existence, functional 
dependence upon microscale parameters in Fig. 2, and physical interpreta- 
tion of the macrotransport coefficients U* and /3* as representing the 
mean axial solute velocity and dispersivity about the mean, obviously 
furnish useful physical insights into the global aspects of the transport 
process. Comparable insight would clearly be absent from the purely 
numerical "first principles" solution of the microscale equation (2.11) leading 
to P for some specific initial position (r', ~b', z'). 

2.3. Taylor-Aris Paradigm 

The (generalized) Taylor-Aris paradigm ~3~ ultimately resulting in the 
expressions (2.12) and (2.13) for the macrotransport coefficients U* and 
/3* derives from asymptotically equating [for long times (2.10), and for 
each integer value m = 0, 1, 2,...] the axial moments (2.8) of the microfield 
P(r, ek, z, t) with the comparable axial moments, 

d e f  2 ~ ~ 
191,,, = 7rr. j (z-z')" Pdz (2.18) 

,XJ 
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of the macrofield P(z, t). More explicitly, the theory involves asymptoti- 
cally matching )~'m(t) with M,,,(t) insofar as dominant-order algebraic 
terms in t are concerned. Such dominant asymptotic matching is possible 
independently of the initial cross-sectional position (r% e)') (and z') at which 
the tracer solute molecule is introduced. [The physical basis for this 
independence is explained in the paragraph following Eq. (2.21).] 

2.4. Lagrangian Interpretation of O* and D* 

The convective-dispersion equation (2.11) asymptotically satisfied by 
the probability density (2.9) constitutes a Eulerian form of the macro- 
transport equation governing axial transport of the solute molecule. In 
what follows we consider an alternative Lagrangian interpretation of this 
equation, or, more precisely, of the phenomenological coefficients U* and 
/)* appearing therein. Toward this end, consider the first axial moment M~ 
of P, namely 

- ~'Jcf = I2~ f '"(z-z ')Prdrde)dz I2.19) 
, l~ ) 0 

as well as the second (central) axial moment, M2- M~ M~, of P, namely 

~)2 d~f i"' ~,f2~ ~,fr" (Z-- ~)2 Pr dr de)dz ( z -  (2.20) 
, ~ ,  ) ) 

2.4.1. Mean Solute Velocity U*. Physically, (2.19) represents 
the mean axial displacement (at time t) of the solute molecule from the 
original axial position z' at which it was originally introduced into the 
system. For sufficiently long times satisfying the inequality (2.10) it can be 
shown 15'3~t that the right-hand side of (2.19) grows linearly with time; 
explicitly, 

z - z' -~ U*t (2.21) 

where U* is a constant, independent of t [as well as of the solute's initial 
position (r',~b',z')]. The quantity U* appearing in this asymptotic 
displacement formula may be interpreted as the mean axial velocity of the 
tracer, in the Lagrangian sense described in the following paragraph. 

Due to its (lateral) Brownian motion the solute tracer molecule is able 
to cross the streamlines of the Poiseuille flow, moving stochastically from 
one to the other, as in Fig. 3. Instantaneously, while situated at the radial 
position r, the tracer is conveyed axially with the same local Poiseuitle 
velocity v(r) as the carrier fluid (the solvent). For times obeying the dimen- 
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r~ ~ l % a c e r  ~ ~ �9 I _1 \ / 

t = O: ( r ,  r  z ' )  S t o c h a s t i c  t r a j e c t o r y '  

Fig. 3. Stochastic "trajectory" of a Brownian tracer or "molecule" initially introduced at time 
t=O into the system at the point (r', ~',z') and currently present at time t at the point 
(r, r z). 

sionless inequali ty (2.10) the solute molecule will have sampled m a n y  times 
(by lateral diffusion) all t ransverse posit ions r (and 4) in the tube cross sec- 
tion, and hence have sampled each of the prevailing axial velocities v(r) a 
statistically significant number  of  times. As a result, the tracer  will, on 
average, move axially with a mean velocity O* which is independent  of the 
initial cross-sectional position r '  (and ~b') at which it was originally intro- 
duced. The solute velocity U* is obviously stochastically formed from all 
of the ins tantaneous  velocities v(r) sampled by the tracer during its 
r andom-walk  cross-sectional sojourns as it is s imultaneously being carried 
downs t ream by the Poiseuille flow of the solvent. Thus (see Fig. 4), the 
solute molecule will, on average, traverse the axial distance L = - z - = '  in 
t ime t [ f rom a point  (r', ~b') on the inlet plane z' to a point (r, ~b) on the 
exit plane z = z ' +  L] .  In a Lagrangian  sense, ~3~ namely, involving tracking 

L < 

< 
Tracer  ' en t r ance '  

plane,  z = z' 

l ,  ~=- 

z 

Tracer  'ex it '  
plane, z = z' + L 

Fig. 4. Downstream stochastic motion of a Brownian tracer "molecule." The latter enters the 
system at the "entrance" plane z = z' at time t = 0 and leaves the system across the "exit" plane 
z = z ' + L  at time t. 
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the particle position in time, the mean axial velocity U* of the solute is 
thus given by the relation 0 * =  L/t. 

Taylor's first relation, Eq.(2.12), namely 0 * =  V, corresponds to 
equality of the mean solute and solvent velocities down the tube. This 
seemingly obvious fact should, however, be regarded as nontrivial, as the 
velocity 0*  refers to the mean solute velocity in a Lagrangian sense, 
namely following the tracer's motion in time, whereas the mean fluid 
velocity ff refers to the Eulerian (i.e., areal) mean solvent velocity (2.2) at 
a fixed tube cross section, z=cons t .  In order to understand Taylor's 
velocity equality it is thus necessary to also think kinematieally of the mean 
stochastic Lagrangian motion of a solvent molecule in time as it moves 
axially, radially, and azimuthally through the tube. The essence of (2.12) is 
then that, on average, a (point-size) solute molecule behaves identically to 
a solvent molecule in a kinematical sense--at least in the present problem, 
where no biasing forces exist insofar as cross-sectional positions (r, ~b) of 
the solute molecule are concerned; that is, in the long run [where the tem- 
poral inequality (2.10) obtains] all transverse positions in the tube cros~ 
section are equally likely for the solute molecule. By allowing sufficient time 
for these transverse positions to be sampled, the solute molecule will 
"forget" the initial cross-sectional position (r', ~b') at which it was intro- 
duced into the tube. 

We have emphasized the equality 0*  = ff of solute and solvent mean 
velocities because such equality is not generally to be expected. Indeed, it 
will be seen later that differences generally exist between these two 
velocities whenever biases exist in the lateral positions (r, q~) accessible to 
a solute molecule. Such mean velocity disparities ultimately provide a basis 
for the chromatographic separation of solutes arising from differences in 
their cross-sectional biases. 

2.4.2. Dispersivity D*. For times t satisfying the inequality (2.10), 
namely t >> r]/D, it can be shown ~5'3t) that the second central axial moment 
(2.20) grows linearly with time; explicitly, 

(z _~)2 _~ 213"t (2.22) 

where 13" is a constant, independent of t (as well as of r', ~b', and z'), given 
explicitly by Taylor's second relation, Eq. (2.13). Analogous to Einstein's 

celebrated Brownian motion relation, namely (Az)2=2Dt for the 
mean-square unidirectional displacement of a solute molecule diffusing 
(with molecular diffusivityD) through the quiescent solvent, Eq. (2.22) 
gives the dispersion about the mean solute position z7 (---z'+ U ' t )  at time 
t in the flowing solvent. However, in contrast with Einstein's mean-square 
displacement relation, which is exact for all times t, Eq. (2.22) is only 
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asymptotically valid after the solute molecule has had an opportunity to 
sample (many times) all of the Poiseuille velocities v(r) in the tube cross 
section. 

The Einstein-like Lagrangian interpretation (2.22) of the dispersivity 
/~* contrasts with the classical Eulerian Fick's-law total axial flux inter- 
pretation of/~* implicit in the macroscale conservation law (2.1 1 ). Refering 
to Fig. 3, this dispersion arises from the fact that due to the stochastic 
nature of the molecular Brownian motion, not all solute molecules 
originally introduced at the inlet plane z' will cross the distant exit plane 
z ( ~ z ' +  L) at the same time [even if they are introduced simultaneously 
at the same cross-sectional location (r', ~b')]. Rather, there will exist a dis- 
tribution of arrival times at the exit plane about the mean time t = L/U*. 
In particular, the leading term of (2.13) represents the contribution to this 
dispersion resulting from the solute's axial molecular diffusion, whereas the 
second (generally more dominant) term arises from the solute's transverse 
molecular diffusion. The latter contribution is highly nonlinear, resulting 
from microscale interaction between lateral Brownian motion and axial 
convection. Taylor ~'2J himself explains why this contribution to the disper- 
sion is greater the smaller is the (transverse) molecular diffusivity. 

2.5. Generalized Taylor Dispersion Theory. 
Macrotransport Processes 

The same single-particle Lagrangian approach embodied in the 
archetypal tube-flow problem can be applied to large classes of microscale 
convective-diffusive-reactive transport phenomena governed by linear con- 
stitutive equations and boundary conditions, leading to generalized Taylor 
dispersion theory. ~s'6~ More recently, this subject has been termed macro- 
transport processes. ~32~ A representative sampling of illustrative problems is 
addressed in subsequent sections. For simplicity of presentation these have 
all been selected as constituting simple variants of the original Taylor-Aris 
problem. 

3. FINITE-SIZE SPHERE. HYDRODYNAMIC 
CHROMATOGRAPHY 

The preceding Taylor-Aris tube-flow analysis has been extended c25'27~ 
from an effectively point-size solute molecule to a finite-size colloidal 
Brownian sphere (radius a). Hydrodynamic and steric wall effects resulting 
from the nonzero value of the parameter 2=a/ro represent the unique 
features of this problem, leading ultimately to a "steric exclusion" chromato- 
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graphic scheme pioneered by Small (33) for separating colloidal spherical 
particles of different sizes via Poiseuille flow in capillary tubes. 

Imagine that the Brownian sphere undergoing transport is composed 
of a transparent material possessing the same refractive index as the solvent 
in which it is suspended, thereby rendering the sphere invisible to an 
observer. Suppose now that a point-size black dot is placed at the center 
of the sphere, so that this point constitutes the only object within the 
solvent visible to the observer. The stochastic trajectory of this body-fixed 
point (termed the particle "locator point") will then represent the entire 
sphere's motion through the solvent. Being a point, to which classical con- 
tinuum-mechanical principles can be applied, one may now calculate the 
conditional probability density P(r, q~, z, t I r', ~', z ' )  that the sphere center 
is situated at the point (r, $, z) at time t, given that it was initially situated 
at the position (r', ~b', z') at time t=0 .  

The microscale conservation equation governing transport of the 
finite-size sphere (center) through the circular cylinder differs in the values 
of its phenomenoiogical functions from the comparable point-size convec- 
tive-diffusion equation (2.4) owing to the existence of wall effects arising 
from the nonzero value of 2. In particular, (2.4)is here replaced by 

~3P ~gP V 
-~-+U(r) -~z= "[D(r) VP] (3.1) 

where U(r) is the axial velocity with which a neutrally-buoyant force- and 
couple-free sphere of radius a (whose center is situated at r) would move 
when suspended in the (undisturbed) Poiseuille flow (2.1) of the mean 
solvent velocity V. Due to wall effects, the translational molecular diffusivity 
D(r) of the sphere is no longer a position-independent scalar as in (2.4), 
but is now rather a second-rank tensor whose value depends upon the 
radial position r of the sphere center within the tube. 

Assuming the pertinent phenomenological functions to be known, 
Eq. (3.1) may, in principle, be solved subject to the respective initial- and 
boundary-value conditions (2.5) and (2.7), and with (2.6) here replaced by 
the no-flux condition 

d P / 3 r = O  at r = r o - a  (3.2) 

The latter reflects the fact that owing to the sphere's finite radius a, the 
sphere center is sterically excluded from the annular domain 

r o - a < r  < r  o (3.3) 



Macrotransport Processes 1107 

adjacent to the wall, and is hence only able to sample those points lying 
within the circular cylindrical domain 

O<<,r < r o - a  (3.4) 

of radius ro - a. 

Using available wall-effect data for the phenomenological functions 
U(r)  and D(r) required in (3.1), the generalized Taylor dispersion theory 
paradigm eventually yields (25) for the mean solute velocity 4 U* 

= 1 + 2 2 - 4 . 9 2 2 + 0 ( 2 3 )  (2,~ 1) (3.5) 
P 

This expression is valid only for the case 

2<0.20 (approx.) (3.6) 

owing to the current unavailability of the phenomenological functions 
required in (3.1) for larger values of 2. Equation (3.5 is plotted in Fig. 5, 

,5 

1.20 

1.15 

1.10 

t ,05 

1.00 
0 

~ t T  i J ~ , ~  i ~ ] ~ r  I , 

0.05 0.10 0.15 0.20 

/], = a / i -  ~ 

Fig. 5. Mean axial velocity 0 "  of a neutrally buoyant Brownian sphere of radius a transpor- 
ted by a Poiseuille flow (mean velocity V) through a circular capillary tube of radius r,,. 

4 While U* represents the mean velocity of the c e n t e r  of the finite (and rotating) sphere, it 
also represents the mean velocity of the sphere itself since, for long times, a/ /points lying 
within the sphere interior will, on average (owing to the inequality L >> a), have traveled the 
same axial distance L down the tube (cf. Fig. 4). 
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Similar calculations performed for the dispersivity may be expressed in 
the form 

/5" = 10M + /) c (3.7) 

where the "hindered" diffusivity /3 M (cf. Fig. 6) of the Brownian sphere 
through the quiescent solvent is ~2s) 

/) u 1 - ( 9 / 8 ) 2 1 n ( 2  ' ) - 1 . 5 3 9 2 + O ( 2  z) 
D~---~ ~ (! - 2 )  z (2,~ [) (3.8a) 

valid for the values of 2 indicated in (3.6), whereas ~2v) 

- -  '~ 0.984~:5/2 + O0:3 ) (1 - 2,~ 0) (3.8b) 
D~z(, 

for the large, closely-fitting, sphere case, with 

r o - a 1 
~:- - - - - -  t 4 0  ( 3 . 9 )  

a 2 

a small, dimensionless, gap-width parameter.  Here, D ,  is the diffusivity of 
the Brownian sphere in the unbounded solvent, given typically by the 
Stokes-Einstein equat ion D~ =kT/6zlx,,a, with kT the Boltzmann factor 

,00  
0.75 i Eq. (a.sa) 

~0.50 ~- x'X~, Interpolated - 

L ",, fvalues 
i ~  0.25 , " """ Eq (3 8b) 

0.00 , i " ' " ' " " ~ " ~  
0.00 0.25 0.50 0.75 I .(x) 

,~,= a / r  () 

Fig. 6. Hindered mean axial molecular diffusivity /~M of a Brownian sphere of radius a 
through a quiescent viscous solvent confined within a circular capillary tube of radius to. 
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and/~o the solvent viscosity. The Taylor or "convective" contribution/) c 
is(25) 

2 V2 [1 - 3.8622 + 14.4022 + O(23) 1 ~/~C ro 
48D~ (1 -- ~-~7 - (2,~ 1) (3.10) 

Several important features appear in Eq. (3.5) for the mean velocity of 
the sphere, the most interesting of which is that (since U* > V) the sphere 
moves faster on average than does the solvent in which it is suspended. 
This conclusion stems from the fact that because of the condition of 
impenetrability of the tube wall, the sphere center is unable to sample those 
points lying within the annular region (3.3) adjacent to the tube wall, 
where the slower-moving Poiseuille flow streamlines obtain [cf. Eq. (2.1)]. 
Thus, in contrast with the solvent molecules, which sample all cross- 
sectional points equally, the solute molecule does not "waste its time" in 
these slow-moving streamlines; that is, the sphere (center) samples only 
the faster-moving streamlines, away from the wall. It is for this reason that 
a spherical solute molecule comparable in radius to that of the capillary 
tube moves faster on average than do the (point-size) solvent molecules 
composing the fluid continuum. [Though this steric exclusion effect is 
offset to some extent by the retarding hydrodynamic effect of the tube wall 
upon the finite-size sphere, the "cutoff' of the slower-moving Poiseuille 
flow streamlines in the annular region (3.3) constitutes the dominant effect 
upon 0*. Indeed, the steric factor of +22 in Eq. (3.5) arises from this 
cutoff, 5 whereas the -4.922 hydrodynamically-induced term arises from the 
retarding effect of the wall. And, as the latter is of higher order in 2 than 
the former, it is of Jess importance in the 241 limit.] 

Equation (3.5) and Fig. 5 show that, all other things (namely r,, 
and V) being equal, the larger the sphere radius a, the faster the sphere 
moves (at least for 2<0.15). The simple reason for this is the larger is a, 
the greater is the number of slower-moving streamlines within the annular 
region (3.3) rendered inaccessible to the sphere center. This phenomenon 
provides a basis for the chromatographic separation of a (dilute) mixture 
of Brownian spheres of different radii at, since these will travel, on average, 
at different axial speeds U,) ( i= I, 2,...). This phenomenon was termed 
"hydrodynamic chromatography" by Small, (33) who first experimentally 
demonstrated its existence. 

SThat is, using (2.1), 

l f2~ f . . . .  

That no weighting factor appears in the integrand of the latter stems from the fact that, due 
to the transverse Brownian motion of the sphere, the sphere center samples all points equally 
in the circular domain (3.4). 

822/62/5-6-15 
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Figure 7 schematically depicts the hydrodynamic chromatographic 
separation of an initially uniform mixture composed of two different sphere 
sizes (respectively characterized by the radii a2>a~), on the assumption 
that the mixture is so dilute that no hydrodynamic or other interaction 
occurs among the solute spheres comprising the mixture. The peaks, 
corresponding to maxima in the two solute concentrations, move at respec- 
tive velocities O* > Oj* > V. The effect of the dispersion about these peaks, 
quantified by the respective dispersivities 13" and /3*, is to decrease the 
sharpness of the separation between the two species. 

Knowledge of the functional dependences of /7** and /3* (i= t, 2,...) 
upon the fundamental parameters of the system (namely, ro, V, a~, Dr) for 
each of the solute species i being separated permits a complete engineering 
design of the chromatographic separation system. In practice, of course, 
one often uses (monodisperse) packed beds rather than simple capillary 
tubes to effect this separation. One must then resort to additional geometri- 
cal modeling, involving--in the simplest case---use of an "effective radius" 
r,, for the characteristic size of the packed-bed interstitial pore space; more 
realistic geometrical models of packed beds--typically spatially-periodic 
models~2-m---have also been the subject of generalized Taylor dispersion 
theory analyses. 

0 

r 

0 
tO 

0 

t = O  

J 

8* 

: u *  

D i s l a n c e  z 

Fig. 7. Chromatographic separation iin a circular capillary tube) of an initially uniform 
mixture introduced into the flowing fluid at the plane z = z' at time t = 0. At time t the two 
species, which respectively move at the different mean axial velocities 0~' and 0~,  have 
separated into two diffuse "bands." The diffuseness embodied in these bands, which limits the 
sharpness of the separation, arises from the respective dispersivities /)~' and /)2" of the two 
species. 
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4. SOLUTE A D S O R P T I O N  ON THE WALLS. 
AFF IN ITY  C H R O M A T O G R A P H Y  

Returning to the original Taylor-Aris-type analysis of Section 2, 
involving a point-size Brownian solute molecule suspended in a Poiseuille 
flow within a circular capillary tube, consider the case where the solute 
molecule experiences absorption forces tending to deposit it on the tube 
wallsJ 11"35) In the simplest possible case the previous Taylor-Aris micro- 
scale no-flux boundary condition (2.6) is here replaced by t h e  linear 
Henry's law adsorption isotherm 

p = k P I  . . . . .  (4.1) 

with k the Henry's law constant and p the surface-excess solute "concentra- 
tion" (probability density) on the wall, measured in amount of solute per 
unit area. In its adsorbed state the solute may diffuse along the wall with 
a surface diffusivity D ' in addition to undergoing both diffusion in the bulk 
fluid (with molecular diffusivityD) and Poiseuille flow convection (with 
mean velocity if). 

With 6 

K = 2k/r,, (4.2) 

a dimensionless Henry's law constant, application of the generalized Taylor 
dispersion theory paradigm derived from the l,agrangian equations (2.21) 
and (2.22) eventually yields 

0*  1 
F I + K (4.3) 

for the mean axial solute velocity U*, and Eq. (3.7) for the total axial 
solute dispersivity required in (2.11). Here, 

D +  KD'  
/) M = - -  (4.4) 

I + K  

The inverse length factor 2/r, appearing in (4.2) represents the so-called specific surface of 
the capillary tube; that is, for an arbitrary axial length l of capillary, it represents the ratio 

2nr,,l 2 
rtr~l =~,, 

corresponding to the wetted surface area per unit volume. This factor arises naturally in 
adsorption problems when the areal results are expressed on a volumetric macroscale basis, 
as in Eq. (2.11). 

822/62/5-6-15" 
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is the purely molecular contribution (corresponding to the quiescent fluid 
case), and 

2p2 1 + 6 K +  I lK 2 
B ('= r~ (4.5) 

48D ( 1 + K) 3 

is the Taylor or convective contribution. 
Since K>0,  Eq. (4.3) reveals that, on average, the solute molecule 

moves through the tube more slowly than does a comparable solvent 
molecule, i.e., 0 * <  V. This phenomenon arises here because the 
(short-range) adsorptive forces acting upon the solute molecule when in 
proximity to the tube wall cause it to spend a disproportionately large frac- 
tion of its time in that neighborhood, where the slower-moving Poiseuille 
flow streamlines prevail. In other words, whereas a solvent molecule is free 
to sample, without bias, all points in the tube cross section, the solute 
molecule is biased in favor of the slower-moving streamlines proximate to 
the wall. By favoring these streamlines, a solute molecule thus moves, on 
average, more slowly in the axial direction than does a solvent molecule. 

Equation (4.3) points up the possibility of chromatographically 
separating two (or more) solute species possessing different adsorptivities k; 
(i = 1, 2,...). Thus, if KI and K 2 are the dimensionless adsorptivities (4.2) of 
solutes 1 and 2, their respective mean velocities down the tube wilt be in 
the ratio 

0* I + K  2 _ r o + 2 k  2 

0~ I + K1 ro + 2kl 
(4.6) 

This yields the inequality 0 * >  U* whenever ks <k2, so that the least 
strongly-bound species (i.e., species 'T ')  is the faster moving of the 
two. Equation (4.6) provides the basis for understanding ajfinity 
chromatography, whereby the separation of solutes possessing different 
affinities k is accomplished by virtue of their different mean velocities. The 
ensuing chromatographic separation of the two species is similar to that 
depicted schematically in Fig. 7. 

Equation (4.4) for the macroscale or effective molecular diffusivity/5 M 
embodies respective contributions from both the volumetric (D) and 
surface (D s) molecular diffusion processes. This corresponds physically 
to these processes operating in parallel Whenever DS> D, the overall 
molecular diffusion process through the quiescent solvent occurs more 
rapidly than would otherwise occur for pure bulk transport, and conver- 
sely. 



Macrotranspo~ Processes 1113 

5. C H E M I C A L L Y  R E A C T I V E  S O L U T E  

Consider the case where the (point-size) formerly passive solute of 
Section 2 now undergoes a first-order irreversible chemical reaction at the 
tube wall (e.g., a catalyst is present there). In this situation the Taylor-Arts 
microscale no-flux condition (2.6) at the tube wall is here replaced by the 
(linear) boundary condition 

_ D  & = k P  at r=r  o (5.1) 

with k the reaction-velocity constant. In such circumstances solute is no 
longer conserved (as a chemical species). Rather, upon reaching the wall 
(via Brownian motion) a solute molecule may be permanently removed 
from the bulk fluid as a result of undergoing chemical reaction. 

The previous Eulerian macrotransport equation (2.11) governing the 
long-time transport of the macroscale solute density/5 of (2.9) is replaced 
in the present circumstances by the expression ~2L22'36J 

iJP - ~P D* g32/5 
u* ,9--w-K*P (5.2) 

The microscale first-order irreversible surface chemical reaction (5.1) 
occurring at the wall thus manifests itself at the macroscale as a first-order 
irreversible volumetric' chemical reaction (characterized by the bulk reac- 
tion-velocity constant K*). 

Surprisingly, the mean velocity /.7* with which the reactive solute 
moves axially is not the same as the mean solvent velocity V. As such, the 
solute is not simply convected on average with the inert carrier; rather, 
the solute moves faster than does the fluid: explicitly, /.7*> V. This 
phenomenon stems from the fact that only those solute molecules "'smart 
enough,' to stay away from the wall region survive their trip downstream, 
thus enabling them to accomplish the transit from tube entrance to exit; 
conversely, those molecules "foolish" enough to meander (by lateral Brow- 
nian motion) over to the tube wall are destroyed by the reaction. As such, 
those solute molecules that exit the tube (and are hence counted in the 
entrance/exit scheme depicted in Fig. 4) have not sampled the slower- 
moving streamlines of the Poiseuille flow existing near to the wall; stated 
alternatively, those molecules surviving the trip downstream, and hence 
exiting the tube, have on average sampled only the faster-moving stream- 
lines distant from the tube wall. In contrast, the (inert) solvent molecules 
(a//of which survive the trip downstream) sample all cross-sectional points 
and hence all streamlines in the tube equally, in effect "wasting" a portion 
of their time in the slowest-moving streamlines. 
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The exact amount by which O* exceeds F depends upon the 
Damkohler number 7 

Da =~kr" (5.3) 
D 

In a similar vein, / )*=  DM+ D", where /gM= D, as before; however, 
/~c does not possess the same classical Taylor value (2.t3) for a passive 
solute as it does for a reactive solute; rather, the ratio /)"/b~' (where the 
denominator /)~' denotes the classical Taylor value, r~ Fz/48D) will also 
depend upon the Damkohler number (5.3), the rather complex functional 
dependence being given explicitly by Shapiro and BrennerJ 2~I 

Of course, the effective macroscale volumetric reaction velocity constant 
R* (in the dimensionless form K'folk) is also functionally dependent upon 
the Damkohler number. For small values of the latter, one finds that 

k 
/~* = 2 "" (Da <~ 1 ) (5.4) 

r o 

In this khwtically-controlh, d limit, diffusive transport to the reactive wall 
occurs sufficiently rapidly such that the effective reactivity is governed 
solely by the true chemical kinetics, as quantified by the microscale 
reaction-velocity constant k. [In this context note that the factor of 

7 The exact relation is 12tl 

/7* ! + (floDa 1 -2 f lo  1)2 
- - = 1 4  

ff 3[(/7oDa I)z+ 1] 

where ]7 o -= ]7o(Da ) is the smallest positive root of the transcendental equation ~37) 

/TJi(/~ ) - Da Jo(/t) = 0 

with Jo the Bessel function of order n. In the limit of small and targe Da, the respective 
asymptotic roots of the latter equation are, respectively, 

/30 - 2Da (Da <~ 1 ) 

and 

/7 o ~_ 2.4048 (Da >> 1 ) 

the 2.4048 coefficient being the smallest positive root of the equation Jo(/~)=0. 
For later reference we also note that, in general, 

K'* 2 r2 
= f l o D /  o 

for arbitrary Da. 
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2/ro appearing in (5.4) corresponds to the so-called specific surface of 
the circular cylindrical tube, as previously observed in connection with 
Eq. (4.2).] In the opposite, d([fusion-controlled, limit one obtains 

/ )  
/~* = 5.783 ~ (Da >> 1 ) (5.5) 

r o 

(See the preceding footnote for the source of the 5.783... coefficient.) Here, 
the effective reaction rate is limited by the ability of the solute to diffuse to 
the wall. 

Finally, we observe that despite the fact that the phenomenological 
coefficients U*, /5", and K* appearing in the reactive macrotransport 
equation (5.2) are independent of the initial microscale data [i.e., of the 
initial cross-sectional position (r', qt') at which the solute molecule is 
introduced into the system at time t = 0 ] ,  the macroscale conditional 
probability density P, defined by (2.9), will nevertheless depend upon this 
initial condition---explicitly upon r'. The reason for this derives from the 
fact that the macrotransport equation (5.2) governing/5, rather than being 
exactly true for all times t, is only valid asymptotically for times t satisfying 
the transverse sampling-time criterion (2.10). And, for earlier times, namely 
t<~O(r~/D), preceding that .for which the macroscale description (5.2) 
becomes valid, a solute molecule initially introduced too near the reactive 
wall will have a higher probability of being destroyed by chemical reaction 
than one introduced further from the wall. Thus, not all solute molecules 
initially introduced into the system survive long enough for the macro- 
transport equation (5.2) to henceforth become a valid descriptor of their 
fate. 

As a result of these facts, in order that the value (2.9) of/5 [derived 
by "first-principles" quadrature from the microscale solution P of 
Eqs. (2.4), (2.5), (2.7), and (5.1)] asymptotically match the comparable 
solution /5 of the macroscale equation (5.2) [subject to the far-field 
boundary condition (2.14)], one must subject the solution of the latter to 
a fictitious initial condition, say P(z, 0), at t = 0 in place of the true initial 
condition (2.15). The scheme for deriving this fictitious initial condition 
from the given microscale phenomenological data, namely v(r), V, to, D, 
and k (as well as r'), is discussed by Shapiro and BrennerJ zl z3) 

Practical packed-bed reactor design principles may need to be 
reexamined in view of the significant differences observed here between 
macroscale descriptions of passive vs. reactive solute transport processes. 
In particular, residence-time distribution-type analyses (especially of first- 
order irreversible chemical reactions) appear to be conceptually inappro- 
priate in situations for which the reaction-velocity constant is nonuniform 
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across the tube cross section, t2zl such as is the case here when it is nonzero 
only at the tube wall, r = %. 

6. A E R O S O L  D E P O S I T I O N  

As a final example, we consider the case of a Brownian aerosol or 
hydrosoi solute particle being deposited (from a dilute suspension of non- 
interacting particles) upon the walls of the capillary tube within which a 
Poiseuille flow occurs at mean velocity p.~24~ Assuming that such a sub- 
micron particle, upon reaching the wall, is held there permanently by 
(short-range) attractive forces, the Taylor-Aris microscale no-flux condi- 
tion (2.6) at the tube wall is here replaced by the boundary condition ~3~ 

P = 0  at r=r,, (6.1) 

The wall thus functions as a sink for any solute particle reaching it (by 
lateral Brownian motion). As a result of its removat from the bulk fluid, 
solute is not conserved (as a chemical species) at the macroscale. 

The situation here is entirely analogous to the microscale first-order 
irreversible surface chemical reaction case of Section 5 in the limiting 
situation where the reaction-velocity constant k ~ ~ .  As a result of this 
analogy, the basic aerosol macrotransport equation is given by (5.2), in 
which the effective volumetric reactivity coefficient is [cf. Eq. (5.5)] 

D 
/(* = 5.783 -5 (6.2) 

ro 

This macroscale phenomenological coefficient quantifies the rate of solute 
disappearance from the bulk fluid, and hence quantifies the corresponding 
rate of solute deposition upon the tube wall. Thus, whereas no real 
chemical reaction occurs at the microscale it nevertheless appears at the 
macroscale, as if a first-order irreversible bulk-phase reaction is, in fact, 
occurring. 

Based upon the microscale surface chemical reaction analogy with the 
results of Section 5, it follows that, on average, an aerosol particle will 
move axially through the tube at a mean velocity U* exceeding the mean 
velocity ff of the carrier fluid. Explicitly, we find that s 

U*/V= 1.564 (6.3) 

s This derives from the U*/ff formula cited in footnote 7, upon there setting flo = 2.4048 and 
letting Da --. ~. 
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The dispersivity/)* can analogously be obtained as a limiting case of the 
results of Section 5 as Da ~ ~ .  

Of course, to obtain the correct solution P of the aerosol macro- 
transport equation (5.2) one must again introduce the idea of a fictitious 
initial condition, as discussed in the preceding section. 

7. CLOSURE 

Given the implicit restrictions imposed by the nature of this review, we 
have only barely touched upon the power of macrotransport analyses in 
the macroscale modeling and physical interpretation of large classes of 
microscale convective-diffusive-reactive transport processes. Some of these 
processes are cited in the Introduction. Contained therein will be found 
references to the works of other researchers who have contributed to the 
development of the subject, and whose absence from our list of literature 
citations is regrettable. 
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